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Long nonlinear waves in the two-layer flow of an inviscid, incompressible fluid are 
considered. Both the free surface and the interface of the two fluids are unknown free 
boundaries. The flow is forced by an obstruction on the bottom and/or an external 
pressure (usually called the wind stress) on the free surface. Away from the critical 
depth ratio between the surface layer and the internal layer of the fluids, the weak 
nonlinearity is of second order. Then there exists a balance between the dispersion 
and the second-order nonlinearity. The first-order asymptotic approximations of 
both free-surface elevation and interface elevation satisfy forced Korteweg-de Vries 
equations (fKdV). Because of the existence of two modes, the total number of types 
of solutions is double that for the single-layer flow. There are two hydraulic falls and 
four solitary waves for positive forcing. The first hydraulic fall and the first two 
solitary waves correspond to the fast mode. The remaining ones correspond to the 
slow mode. The first hydraulic fall was numerically found by Forbes (1989) by 
directly integrating the Laplace equation with nonlinear boundary conditions. 
There are two types of forcing according to the length of the base of the obstruction. 
One type is called local and the length of its base has the same scale as the height of 
the forcing. The expression of the forcing in the fKdV is given by the Dirac delta 
function. Based upon our long-wave scale the horizontal laboratory lengthscale is 
shrunk by ef, while the vertical laboratory lengthscale is unchanged. Hence the 
semicircular bumps in the papers by Vanden-Broeck (1987), and Forbes (1988, 1989) 
are all considered to be local in the present paper. For the locally forced cases, 
stationary problems have been solved analytically. We have derived analytical 
expressions for the upstream speeds U, and U,, at which the hydraulic falls can occur 
and solitary waves respectively cease to exist. The formulae are reduced to those due 
to Miles (1986) in the case of a single-layer flow and very small forcing. A full 
comparison among the asymptotic, computational and experimental results is 
provided. The comparison shows that the difference is less than 10% for U, and U,  
in most of the parameter range where the asymptotic method is valid, the 
computational scheme converges and experiments were conducted (see figure 10). 
The second type of forcing is called non-local and the length of the base of the 
obstruction has the same scale as the wavelength. The existence and behaviour of the 
stationary solutions of the non-locally forced f KdV are described. Surprisingly, there 
can be more than four solitary waves sustained on the site of some negative forcing. 

t Current address : Applied Mathematics Institute and Department of Mathematics, University 
of Alberta, Edmonton, Canada T6G 2G1. 
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1. Introduction 
There has been an increasing interest in studying the forced long nonlinear waves 

in fluid flows since the innovative experiments of Huang et al. (1982) and the 
remarkable numerical findings of Wu & Wu (1982). Their studies are on forced waves 
in a current of near critical speed of shallow water flows. The forcing is due to a 
bottom obstruction and/or an external surface pressure. New findings for a single- 
layer flow in the last decade include upstream periodically radiated solitons (Wu & 
Wu 1982), multiple solitary waves (Vanden-Broeck 1987) and hydraulic falls 
(Sivakumaran, Tingsanchali & Hosking 1983). These phenomena do not exist in 
unforced channel flows. There are numerous published papers that elucidate these 
conspicuous phenomena from various perspectives. The published studies may be 
classified into three categories : experimental approach (Huang et al. 1982 ; 
Sivakumaran et al. 1983 ; Forbes 1988), computational approach (Forbes & Schwartz 
1982 ; Vanden-Broeck 1987 ; Forbes 1988,1989) and asymptotic approach (Wu & Wu 
1982; Miles 1986; Mei 1986; Naghdi & Vongsarnpigoon 1986; Shen 1989). Here we 
have listed only a few among many excellent contributions. The published results for 
single-layer flows can be summarized as follows. 

For a two-dimensional channel, there are two important values of the Froude 
number, which is the ratio of the upstream uniform velocity to  the critical speed of 
shallow water waves, F, > 1 and FL < 1 such that :  (i) when F 2 F,, there are two 
stationary solitary waves sustained over the site of the forcing, and a t  F = F, the two 
solitary waves merge into one; (ii) when F < FL, there is a unique stationary 
downstream cnoidal wave matched with the upstream null solution; (iii) when 
F = FL, the period of the cnoidal wave extends to infinity and the solution becomes 
a hydraulic fall; (iv) for some values of F in the interval (FL,Fc), solitons are 
periodically generated a t  the site of forcing and radiated upstream. I n  this case, the 
flow never approaches a steady state. 

In  the above, F, is called the turning point and FL the cutoff point. These terms 
come from bifurcation theory. The multiple solitary wave solutions are called 
supercritical solitary waves. The downstream cnoidal wave solution is called a 
subcritical cnoidal wave. The soliton radiation region of the Froude number is called 
the transcritical range. I n  the past, one major effort in this area of research was to 
determine the values of Fc and FL. The existence of the two values was conjectured 
in Wu & Wu (1982), and approximate values were first found by Miles (1986) by an 
asymptotic method. The exact value for F, was first found by Vanden-Broeck (1987) 
and that for FL by Forbes (1988) by direct numerical integration of the Laplace 
equation. We refer to  this direct numerical integration of the Laplace equation as the 
computational method in the present paper. 

To obtain the aforementioned results, experiments were conducted for forcing by 
a semicircular bottom obstruction type (Huang et al. 1982; Forbes 1988) and by a 
Gaussian bottom obstruction type (Sivakumaran et al. 1983). Direct numerical 
integrations were performed for bottom obstructions of a semicircle (Forbes & 
Schwartz 1982), a rectangular step (King & Blohr 1987), a triangle (Dias & Vanden- 
Broeck 1989) and a Gaussian distribution (King & Blohr 1990). Asymptotic methods 
can include the wind stress type of forcing very easily. Although the complication of 
the shape of the distributed forcing causes major difficulties for the computational 
method, it poses almost no problem in the asymptotic approach. Further, the long- 
wave asymptotic method has been systematically extended to flows in channels of 
arbitrary cross-sections (Shen 1989). Shen recently showed that, for the locally 
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forced case, the surface waves are independent of the shape of the bottom 
obstruction, but instead are dependent only on its area (Shen 1991). 

It is even more important to study the forced near-critical waves in stratified flows 
for meteorological and oceanographic reasons. It is a common feature that 
atmospheric and oceanic currents are stratified at near critical speeds (Baines 1987 ; 
Patoine & Warn 1982). In $5, it will be seen that this ‘near’ does not preclude 
reasonably large intervals which include the critical speeds. Hence the assumption of 
‘near ’ critical speed will not pose much constraint on applications of the asymptotic 
theory to practical problems. Asymptotic studies on forced stratified flows were first 
conducted by Grimshaw & Smyth (1986). Extensive experimental work on two-layer 
flows was conducted by Baines (1984), and was followed by that of Melville & 
Helfrich (1987). The latter only takes into account the interface as the free boundary. 
The upper surface is rigidly covered. Besides the time-honoured phenomena such as 
soliton radiation etc, some new phenomena were discovered such as dispersive and 
non-dissipative internal bores, the existence of the critical layer and the appearance 
of third-order nonlinearity. The clever direct numerical integration scheme for the 
two-layer flow due to Forbes (1989) recovered a hydraulic fall in the two-layer flow. 
Despite these works, the studies on weakly nonlinear waves in two-layer flows are far 
from complete. In the current paper we report our findings in this area of research. 
They are: (i) analytic expressions for the values of the turning point and the cutoff 
point of the upstream velocities; (ii) locally forced four solitary waves and non- 
locally forced six to eight solitary waves; (iii) two hydraulic falls; (iv) agreements of 
asymptotic results with experimental and computational results for supercritical and 
subcritical flows. 

An asymptotic approach is employed here. The first-order elevation of both the 
free surface and the interface yield forced Korteweg-de Vries equations (fKdV). 
There are two modes because of the two-layer stratification. The coefficients of the 
fKdV depend not only on the flow configuration but also on the modes. The fKdV 
equations for the free-surface elevation and the interface elevation are decoupled. 
This is a consequence of the second-order weak nonlinearity. The interplay between 
the free surface and the interface is not that strong. A detailed comparison among the 
available data obtained by experiments, direct numerical integrations and our 
asymptotic method is made. The comparison shows that the difference is less than 
10% in most of the parameter range where the asymptotic method is valid, the 
computational method converges and experiments were conducted. This is a 
surprisingly good agreement among the results obtained from different approaches. 
Particularly for the comparison of the analytic results from our asymptotic method 
with those from both experiments and direct numerical integrations, such a close 
agreement was unexpected. 

The aforementioned comparisons are in the regime of supercritical and subcritical 
stationary flows. In the regime of transcritical unsteady flow, solitons are periodically 
generated at the site of forcing and radiated upstream. This phenomenon of periodic 
soliton generation was observed from numerical solutions of both the fKdV and the 
forced Boussinesq equations, and also from laboratory experiments by Professor T. 
Yao-Tsu Wu’s group in Caltech. Their numerical solutions were compared with the 
experimental results and the agreement was good (Lee, Yates & Wu 1989). Similar 
comparisons were made by Melville & Helfrich (1987) for internal periodic soliton 
generation. 

The plan of the paper is as follows. In $2 we present the details of the derivation 
of the fKdV equations. Section 3 describes the stationary solitary wave solutions and 
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the turning point bifurcations for supercritical flows. The turning points are given 
explicitly for the locally forced case. Here we specify the ratio of the upstream 
velocity of the surface layer to that of the internal layer. Hence only the upstream 
velocity of the internal layer is considered as the primary varying parameter. 
However, the value of the aforementioned ratio is not restricted to be equal to one. 
In $4, stationary cnoidal wave solutions and hydraulic falls are delineated. The cutoff 
points for the locally forced case are analytically found. The comparison among the 
asymptotic, computational and experimental results is given in $5. Section 6 
contains discussion and concluding remarks. 

2. Derivation of the fKdV equations 
The fluids under consideration are inviscid and incompressible. The difference 

between the two fluids is in the density. To avoid the Helmholtz instability, the 
density of the surface-layer fluid is less than or equal to the density of the fluid of the 
internal layer. The ratio of the upstream velocity of the surface layer to that of the 
internal layer is a constant, denoted by y. The fluid motion in both layers is assumed 
to be irrotational. The flow is confined in a two-dimensional channel and forced by 
a bottom obstruction and/or a wind stress (see figure 1 ) .  Let the x*-axis be aligned 
along the longitudinal direction and on the bottom of the channel, and the y*-axis 
vertically opposite to the gravitational direction. The subscripts ‘s’ and ‘ i’ signify 
the quantities for surface layer and the internal layer respectively. H ,  and Hi are the 
upstream depths of the two fluids respectively, p, and pi are densities, p* is pressure, 
@: and @: are flow potentials, q,* and 7: are free boundary elevations, and c,* and 
c: are the upstream uniform velocities; y* = h*(z*) expresses the bottom topography 
and p* = p* stands for the wind stress; g is the gravitational acceleration and t* is 
time. 

Let L be the typical wavelength. We use L and Hi as the horizontal and vertical 
scales respectively and pi as the density scale. The following dimensionless variables 
are introduced : 

e = ( H , / L ) 2  -4 1 (small parameter in our asymptotic analysis) ; 

cr = H,/H,, p = PJPi d 1 ; 

(2, y)  = (&*, y*)/H,, t = t*(g/H,)ie;; 

@, = C@>,*/[Hi(gHi)i], Gi = €iG:/[Hi(qHi)i]; 

P = P*/(PigHi); 
C, = c,*/(gH,)i, 

7 s  = V,*/Hi, 
ci = c:/(gH,);;  

Ti = 7:lHi; 
h(z)  = ~-~h*(x*)/H, 

p ( x )  = s-2p*(x*)/(pi gH,) 

(small bottom obstruction assumption) ; 

(small wind stress assumption). 

In terms of the dimensionless variables, y = 1 + c + 7, is the free surface and y = 
1 + vi is the interface. It is our intention to investigate the free-surface and interface 
waves in the near-critical flows. The precise meaning of near-critical velocity is that 
the upstream uniform velocities c, and ci take the forms 

e,  = cp) +€A,, ci = c y  +€Ai. (1) 

Here cr)  and cia) are the critical velocities which will be determined by the solvability 
condition of the second-order perturbation problem. We shall see this later in this 
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4 y* 

Internal layer (i) 

T 
X* 

FIQURE 1.  Configuration of the two-layer fluid flow forced by a bump and wind stress. 

section. A, and A, are constants which signify the perturbations of the upstream 
uniform velocities about the corresponding critical velocities. 

Then the flow potentials take the forms 

@s = csx+$s(~,Y,t) ,  @i = c,x+$,(z, y, t) .  (2) 
Hence q$(x, y, t)  and $,(x, y, t) are the perturbations of the flow potentials about the 
upstream uniform flows. 

In the fluid domain, the flow potentials both yield the Laplace equation. On the 
free surface, a kinetic condition and the Bernoulli equation must be satisfied. On the 
interface, the kinetic condition is that the two fluids do not penetrate into each other, 
and the dynamic condition is a combined type of Bernoulli equation. On the bottom, 
a kinetic condition for the internal fluid not penetrating into the rigid bottom should 
be satisfied. In terms of the dimensionless quantities, the above equations can be 
written as follows : 

4 s , z z + # s , y y  = O ,  l + V i  < Y < l+u+Ts, (3) 

q4,zz+$i,yv = 0, E2h < Y < I+?+; (4) 
on the free-surface y = 1 + u + vS : 

“ T S ,  t + (cs + A, z) 9s.z = @A, y, ( 5 )  

E9s, t + tc4:. z + E-l4:, y) + c, A, z + 9 s  + E 2 P P  = 0 ; (6) 

“i, t + (cs + 4 s .  z) 9i, 5 = E-l@s, y’ (7)  

%t+(ci+A,z)rl i ,z = 0 4 , y ,  (8) 

P [ 4 s ,  t +M,”, z + E-14:, y) + cs A,, + 9il = 4 . t  + t(&! + E-l#,y) + ci A, z + 9, ; (9) 

( C i  + A,%) h, z = @A, y‘ (10) 
We would like to proceed with the asymptotic expansion in the strips S, = 

((5, y) E !R2 10 < y < l} and Ss = {(x, y) E !R2 I 1 < y < 1 + u}. Hence it is required to 
approximate the boundary conditions on the free surface, the interface and the 
bottom, so that the boundary conditions are approximately prescribed on y = 1 + u, 
y = 1 and y = 0 respectively. Here we take the Taylor expansions as the 
approximations. Therefore, after the approximation, all of the above equations are 
confined in the two strips Si and S,. 

It is our intention to study dispersive waves with second-order nonlinearity. Then 
the response of the free boundaries (here the free surface and the interface) to the 

on the interface y = 1 +qi:  

and on the bottom y = ezh(x) :  
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forcing of order s2 is of order 8. We shall see later on that this nonlinearity assumption 
does not describe the stronger nonlinearity in a neighbourhood of the critical ratio 
of the depths. In  this neighbourhood, the response of the free surface and the 
interface to  a forcing of order e2 is of order d. Consequently, a third-order 
nonlinearity is introduced to  the asymptotically reduced equation. However, in this 
paper we concentrate on the second-order nonlinearity. We assume asymptotic 
expansions for ($,, & qs, ri) as follows : 

(11) 

(12) 

(13) 

(14) 

Substitute the above asymptotic expansions into the approximated governing 
equations on the strips Ss and 8, and consider the problems of the first three orders 
according to the powers of E .  

A = E $ F ( ~ ,  y, t )  + E z m x ,  y, t )  + 0 ( 6 3 ) ,  

$i = q q l ) ( x ,  y, t )  + € 2 q y ( X ,  y, t )  + 0 ( € 3 ) ,  

7, = ETpy. ,  t )  + e 2 ~ ( ~ ,  t )  + 0 ( € 3 ) ,  

= E9p) (x ,  t )  + e 2 9 p ( 2 ,  t )  + 0 ( € 3 ) .  

The Jirst-order problem : 

4 i f k y  = 0 , l < y < l + c T ,  

and q5itb = 0 on y = 0. 

The solution to the first-order problem is 

- 1  
@L = clo“(1 - P )  91”+P9:1’1. (24) 

I n  (23) and (24), cia) and clo) are the critical velocities of the upstream uniform flows 
and will be determined by the solvability condition of the second-order problem. The 
first-order elevations 9L1) and 91’) will be determined by the solvability condition of 
the third-order problem. 

The second-order problem : 
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P 

FIGURE 2. The dependence of the upstream critical velocity of the internal layer on the density 
ratio of the two fluids for y = 1 and u = 0.5 ,1 ,2 .  The solid lines are for the fast mode and the dotted 
lines for the slow mode. 

and $if; = 0 on y = 0. 

Using (25), (27) and (29), one can derive that 

( c p z -  d % , z  cs Ti,z (1) - (we (1) = 0. 

Using (26), (32) and (30), one can similarly derive that 

(33) 

- P T S ,  z + ( C y  - 1 + p )  Ti;; = 0. (34) 

The solvability condition of (33) and (34) for non-trivial solutions (q& 7:;;) is that 
the determinant of the coefficient matrix vanishes, i.e. 

( c p z - ~ ) ( c ~ o ) a - i )  =pa .  (35) 

This is called the dispersion relation which determines the critical velocities c f )  and 
cia). However (35) is underdetermined unless we specify the ratio of the upstream 
uniform velocity of the surface layer to that of the internal layer, y :  

y = c,*/c:. 
By (l) ,  we have 

c p  = yep, As = yAi. 

From (35), the critical velocities are given by 

(36) 

(37) 

(38) 
1 

C!O)z = - [ ( y2  + a) f ((y2- ay + 4yZap)iI. 
2y2 
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The ' + ' and ' - ' correspond to the fast mode and slow mode of the upstream flow, 
respectively. This result agrees with equation (3.4) of Peters & Stoker (1960) when 
y = 1. See figure 2 for the above relation. Even for the slow mode, the right-hand side 
is still greater than zero as long as p < 1. Hence the complex-valued upstream 
velocity corresponds to the Helmholtz instability. 

For the single-layer flow with depth one, one has a = 0, so cia) = 1 for the fast 
mode. This value one is the well-known critical Froude number. The slow mode for 
the single-layer flow is rest water. 

For a single-layer flow of depth 2, one has a = 1, p = 1. Then for the fast mode 
C10)2 = (y2+  l)/y2. If the velocity ratio y = 1, then cbo)' = 2. Here the total depth of 
the upstream fluid is H = 2Hi, and the critical Froude number is ( g H ) ;  = d2(gHi)i, 
which is equal to c ~ o ) ( g H , ) ~  in terms of the notations for two-layer flows in this paper. 
Hence cl0)* = 2 and this result agrees with the above result for a single-layer flow of 
depth one. 

Next we integrate (25)  and (26) with respect to y and with consideration of the 
boundary conditions. Finally the Bernoulli equations (28) and (31) yield the 
following expressions for $?) and $1') in terms of lower-order parameters: 

1 

c,  

1 

px = -- (o) [$::&+A, $:UJ (wave propagation term) 

-F$$ $:fix (nonlinear term) 

+ [ - y - ( c y  - 1 - a) y + f( 1 + a)2 + ( C p 2  - 1 - a) (1 + a)] $$...z 
(dispersion term) 

1 
(o )p , z  (forcing term) 

PCS 

-- 

1 

c, 
- ~ T $ L  (for the solvability of the third-order problem), (39) 

1 2  ${:kx = -0 (cp) - a) ($& +Ai  (wave propagation term) 
cs 

- L ( c i o ) z -  C?) 2 (1) 
a) $i,z$lfkz (nonlinear term) 

fp 
+ -(cp)'- a) ( - $g2 + $) + a p ( ~ p ' ~  - ;a)] $ELzxx (dispersion term) 

-2 (forcing term) 

[$) 

Tj  
c p  

1 

Ci 
+ 0 [ (p  - 1) 7::; -pyL?J (for the solvability of the 

third-order problem). (40) 

Here $2) and #{l) are determined by (23) and (24). The first-order elevations 7:) and 
7:') are not yet determined. This will be done by the solvability condition of the 
problem of next order. 



(48) 

The determinant of the coefficient matrix of (47) and (48) vanishes because of the 
solvability condition of the second-order problem (see the dispersion relation (35)). 
The solvability condition of (47) and (48) for VL?! and T$; is that the inhomogeneous 
part is perpendicular to the null space of the conjugate matrix of the coefficient 
matrix. This orthogonality condition leads to the forced Koteweg-de Vries equation 
(fKdV) we desired to obtain: 

m1 Ti!; + m2 7:: ! + m3 Pi1) rLt! + m4 rL:!xx = 3, z, (49) 

where the coefficients m,, k = 1,2 ,3 ,4  and f(x) are 

f(x) = c ~ ~ ’ 2 p ( z ) + C ~ O ’ P ( C ~ ~ ’ 2 - c l ) h ( z ) .  

The upstream condition of uniform flow implies that 

yp( - 00) = T/J;?J - 00) = qi!’z,( - co) = 0. 

(54) 

(55) 
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The fKdV (49) and the upstream boundary condition (55) determine the first- 
order free-surface elevation 7s'). The first-order interface elevation 71') is then 
determined by (33), i.e. 

(56) 7y) = ( c;)z)7k". 

With specified y ,  c?)'- (T > 0 for the fast mode. Hence 7i1) and 7i1) are of the same 
sign (sometimes referred to as the same phase). In  contrast, cia)' - (T < 0 for the slow 
mode. Hence r!') and 7c) are of opposite signs (opposite phases) for the slow mode. 

For a single-layer flow of depth one, we have (T = 0 ,  cLo) = c?) = 1, m, = 1, m2 = 
A,, m3 = -& m4 = - Q ,  andf(x) = p(z) + h(x) .  This is the same as the fKdV derived by 
Mei (1986). 

For a single-layer flow of depth 2, we have (T = 1, p = 1,  y = 1, cia) = clo) = 2/2, 
m, = 4 2 ,  m2 = 4 2 4 ,  m3 = -:, m4 = -!, and f(x) = 2@(x) + h ( z ) ) .  

In general, for a single-layer flow of depth d,  we have (T = d - 1,  p = 1, y = 1, 
do) 1 = cs (O) = di,  m 1 -  - di, m 2 -  - &A,, m3 = -%, m4 = -g3, andf(z) = d(p(z) + h ( z ) ) .  This 
agrees with the fKdV derived by Shen (1989) for a rectangular channel and may be 
considered as a verification of the correctness of the coefficients (50)-(54). 

3. Solitary waves and turning-point bifurcations 
In this section we consider the stationary solitary wave solutions of the fKdV (49). 

Namely, we investigate all possible solutions of the following ordinary differential 
equation boundary-value problem : 

m2 7:') + +m3 rP)* + m4 T$& = g(z), 

?p( f oc)) = T/$?J * co) = 0. 
(57) 
(58)  

The upstream velocity perturbation is included in the coefficient m2. Hence it is m2 
that controls the solitary wave solutions of (57) and (58). m2 is always positive when 
A, and A, are positive. By (35) one can show that when 

3c2(1 -7) 
p > (;y and < 1, 

2Y 
(59) 

then m3 < 0 and m4 < 0 ,  for any 0 < p < 1 and non-negative y (see figure 3). For 
some other values of (T, p and y ,  m3 and m4 may be zero or positive. Then our 
asymptotically reduced equation above (the f KdV) becomes invalid because of the 
disappearance, or the adverse effect, of the nonlinearity and the dispersion. It implies 
that the second-order nonlinearity in the fKdV does not include a somewhat stronger 
nonlinearity intrinsic to the system. A higher-order nonlinearity must be included at 
the beginning of the asymptotic expansion. We will briefly discuss such a situation 
in $6. Here we concentrate on the case of second-order nonlinearity, which is 
warranted by (59). 

With specified parameters y ,  p and cr, we shall find the solutions of the boundary- 
value problem (57) and (58). The solutions will depend on the upstream velocity 
perturbation parameter A,. One can prove that when m2 is sufficiently large, there 
exists at least one solution to the problem (57) and (58). This was proved by Shen 
(1989) by using the contraction mapping theorem. Further we have 

THEOREM 1. Iff(z) >, 0 and has compact support, and if (59) holds, then there exists 
A, > 0 such that the problem (57)  and (58)  has at least two positive solutions when 
A > A,. 
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-1  

-2 

- 3  

- 4  

- 5  

-6 

~ 0 . 4  0.6 0.8 1 .o 
------- (4 

\ 

FIQURE 3. The dependence of m, and m, on u, y and p for the fast mode. Curve (a )  m,, u = 0.5, 
y = l ;  (b )  m4,u=1,  y = l ;  ( c )  m, ,u=l ,  y = l ;  ( d )  m,,u=0.5, y = l ;  (e) m,,cr=I, y=1.5;  
(f)m,,cr=2,y=1;(g)rn,,u=1,y=2;and(h)m4,a=1,y=2. 

The proof of the theorem is the same as that for a similar theorem due to Shen 
(1989). In the case of local forcing, the value of A, can be analytically found. In turn, 
one can determine the upstream Froude number U,/(gH): = 1 + sh, for single-layer 
flows. This agrees with a formula first derived by Miles (1986) when E is very small. 
See $5.2 for more details. 

Let u(x) and v(x) be solutions of (57) and (58). Let a be the left-most local 
maximum point for both u(x) and v(x). If u(a)  = v(a),  then u(x) = v(x) for any x, for 
the solution to the problem 

m2u++,u2+m4u’’ = u(x), x > a ;  

u(a) = N > 0, u’(a) = 0, u(m)  = u’(m) = 0 
is unique. 

Therefore the solutions to the problem (57) and (58) can be distinguished by the 
left-most local maximum values. Let z = inf(z1 X E  ‘8, where u’(x) = 0, u is a solution 
of (57) and (58)) and N = u(z) > 0. Then u(x)  is monotonically increasing in ( -  m,  z )  
and has an inverse 

x = X(u;N), U E  ( 0 , N ) .  

Multiplying (57) by u’(x), where u ( x )  is a solution of (57) and (58), and integrating 
the resulting equation with respect to x in ( -  m, z ) ,  we have 
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Then 
A = m2/m. 

Equations (60)-(62) define a curve r in the (A,N)-plane. The curve r is called the 
bifurcation diagram. It has two straight line asymptotes, 

3mA 

m3 
N = - - ,  N = O .  

If r is connected, then the structure of the asymptotes implies the existence of a t  
least one turning point, i.e. A,. At this turning point, the vertical line A = A ,  is 
tangent to r a t  (A,,N,) .  For positive forcingf(z) 2 0, one has A, > 0 from the three 
bifurcation equations above. 

For the locally forced case, f(x) = 2PS(x). Both the Dirac delta function S(x) and 
the solutions u(x) are generalized functions. The usual product of two generalized 
functions is not defined. Hence the bifurcation equation (60) cannot be used any 
more. Fortunately, the solutions u ( x )  and the bifurcation diagram r can be found 
analytically. When f(x) = 2PS(x), all solutions to the ordinary differential equation 
boundary-value problem (57) and (58) can be written in the following form: 

(x-L,) if x 2 0, 
m3 ( z + L o )  if x < 0, 

where Lo = (4mJ -m2)iarctanh ( b ) ,  (64) 

and b is in ( - 1,l) and satisfies the following third-order algebraic equation : 

When m2 = m,, 

, = 0. b3-b+  m3P 
6m2(-m2m4)3 

(65) has a double root in ( -  1 , l )  and the third root is outside ( -  1 , l ) .  This is the point 
at which the two solitary waves associated with this mode merge into one. Hence the 
turning point A, = m,/m is found to be 

1 3 m i ~ 2  t 
= z ( x )  * 

For positive local forcings, P > 0, the bifurcation diagram is analytically given 
below 

The (l(#)IIa,,h)-curve defined above has two branches: the upper and lower 
branches correspond to $n and in respectively. The two branches are joined a t  the 
turning point A,, a t  which IIT,$)II~ = -2m,/m3. As A+ co, the (IIqL')Ilp,A)-curve has 
two asymptotes : - 3mA/m3 for the upper branch and P / [ 2 (  - m4 f i A ) 3 ]  for the lower 
branch. Therefore, the asymptote for the upper branch solutions is a straight line and 
that for the lower branch is a parabola, and the A-axis is in turn the straight line 
asymptote of the parabola. Figure 5 below shows these geometric results. 
For u = 1, y = 1, p = 0.5, P = 1, the four solutions are shown in figure 4 when 
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FIQURE 4. Four supercritical solitary wave solutions of the locally forced fKdV problem (57) and 
(58) when c = 1 ,  y = 1, p = 0.5 and P = 1.  The solid curves correspond to  the fast mode and the 
dotted curves to the slow mode. 

A = 1.5. The bifurcation diagrams are shown in figure 5 for P = 2 , i .  These figures 
were very easily generated by the symbolic computer routine Mathematica. 

Now let us look at the case of non-local forcing. To solve the problem (57) and (58) 
one has to use a numerical method. The difficulty in finding numerical solutions of 
(57) and (58) is in distinguishing one solution from the other with the same equation 
and the same boundary data at - co and co. Shen (1989) found an efficient and 
reliable numerical scheme to find multiple solutions of (57) and (58). We recapitulate 
it below. Let fc  CF(X), x- = inf supp (f),  x, = sup supp (f). The analytical solution of 
the problem (57) and (58) from -co to x- is 

Different solutions are distinguished by different values of the phase shift Lo. To 
determine this phase shift Lo, we introduce a new quantity B as follows: 

B(x ,  &Lo) = j-).f(s, d!m dE 

= + (@2 + h 3  rP'(.)) (vL1)(x))2' 
It is clear that  B(x, A, Lo) = B(x+, &Lo) for every x 2 x+. One can show (Benjamin 

& Lighthill 1954) that Q(m) = y;!',(co) = 0 if and only if 

B(x+, A,  Lo) = 0 and 0 < vL1)(x+) < - 3m2/m3. 

This condition determines the phase shift Lo. 
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0.5 1.5 2.0 2.5 3.0 
n 

FIGURE 5. The turning point bifurcation diagram of the locally forced fKdV problem (57) and (58) 
when u = 1, y = 1, and p = 0.5. The solid curves correspond to  the fast mode and the dotted curves 
to  the slow mode. Curve (a) P = 1, slow mode; ( b )  P = 2, slow mode; (c) P = 1, fast mode; and (d) 
P = 2, fast mode. 

Therefore we solve the following initial-value problem : 

m, 7:') ++m3 v?)*+ m4 ritiz = if(x), x > x-, 

up to x+ for a given Lo. B(x+, A, Lo) can be computed. Repeating the above process 
by a do-loop for Lo, we obtain an (Lo, B)-curve. The intersections of this curve with 
the Lo-axis are the solutions of B(x+,A,L,) = 0 for prescribed x+ and A. Therefore 
the number of solitary wave solutions to  the fKdV equals the number of zeros of 

The above scheme was implemented by a Mathematica package called 
NumericalMath/RungeKutta . m on the SUN SPARCstation 1 + . As an example, we 
let CT = 1, p = 0.5, y = 1, A = 1.2 and 

B(x+, A,L,). 

The corresponding (B,Lo)-curve and the solutions to (57) and (58) are shown in 
figures 6 (a )  and 6 ( b )  respectively. 
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FIGURE 6. (a) The B,L, relationship when (T = 1, y = 1, p = 0.5, h = 1.2 and when the non-local 
forcing is 

2(i-s2); if 1x1 < 1, 
elsewhere. 

The solid curves correspond to the fast mode and the dotted curves to the slow mode. (b) The four 
supercritical solitary wave solutions correspond to the data in part (a). The phase shift for each of 
the solutions is: curve (i)+L, = 0.278065, ( i i )oL,  = 1.360600, (i i i)oL, = 0.347700, ( i v ) s L ,  = 
-0.065743. Solutions (i) and (iv) are for the slow mode, and solutions (ii) and (iii) the fast mode. 
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FIGURE 7. Six supercritical solutions of the fKdV problem (57) and (58) for non-local negative 

X 

forcing 

and u = 1 ,  y = 1 ,  p = 0.5, A = 1.5. The solid lines correspond to the fast mode: m, = 0.7654, m = 
0.7654, m, = -0.75, m4 = -0.4684. The dotted lines correspond to the slow mode: m, = 1.8478, 
m = 1.8478, m, = -0.75, m4 = -0.1149. The phase shifts are: curve ( a ) o L ,  = -1.324417, 
@)oh, = -0.731526, ( c ) o L ,  = -0.284012, ( d ) o L ,  = 0.082742, ( e ) o L ,  = -1.666355 and 
( f ) + L ,  = -0.146660. 

For some non-local negative forcings, surprisingly there can exist more than four 
solitary wave solutions to (57) and (58). For the negative semi-elliptical forcing 

and h = 1.5, there are six solitary wave solutions. Two of them correspond to the fast 
mode and the other four correspond to the slow mode. Among the four solutions for 
the slow mode, two of them are non-symmetric with respect to the origin even though 
the forcing is symmetric. See figure 7 for the six solutions. 

One can naturally make a guess that there may exist eight solitary wave solutions, 
four for the slow mode and four for the fast mode for some A and some f(x). This is 
indeed true. For the negative forcing in the above example, there are eight solutions 
when A = 5 .  Whether there exist more than eight solutions for certain non-local 
negative forcing is yet to be investigated. Probably, the answer is yes. 
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4. Hydraulic falls 
In this section we consider all the stationary solutions of the fKdV (49) when 

m, < 0. What is to be investigated is the following ordinary differential equation 
initial-value problem : 

m2 < 0, (68) 

qil)(x-) = rf',(x-) = 0, and ril) is bounded. (69) 

m2 rf" + &m3 qi1)* + m4 qp',, = g(x ) ,  x- < x < 00 , 

We still assume (59) holds. This assumption ensures the formal validity of the 
model equation (68). In  addition, we also keep the assumption thatf(x) is of compact 
base, i.e. f(x) = 0 when xr$ [x-, x+] for some real numbers x- and x,. It can be proved 
that, when A( = A,) is sufficiently small (negative), the initial-value problem (68) and 
(69) has a unique solution (Shen & Shen 1990). 

The energy integration of the initial-value problem (68) and (69) in [x+, 00) leads 
to a new initial-value problem of reduced order: 

The data qF)(x+) and yifL(x+) are obtained from the numerical integration of the 
initial-value problem (68) and (69) from x- to x+. Hence for a given forcingf(x), 
D = D(A) is a function of only A. Depending on the choice of the value of A,  the third- 
order algebraic equation 

3m2 z3+-2 --D = 0 
m3 

(73) 

has three distinct real zeros, a double zero, or only one real zero. Correspondingly, the 
new initial-value problem (70) and (71) has a cnoidal wave (Stokes wave) solution, 
a hydraulic fall solution, or an unbounded solution respectively. The unbounded 
solution has no physical meaning and is outside the scope of our consideration. 

When f(x) 2 0, one can show that D(A) > 0 and D(A) is bounded as A+ co. Hence 
the equation 

has at least one solution A,. At this A,, (73) attains its real double root and the 
cnoidal wave solution approaches the hydraulic fall. Beyond this limit, the initial- 
value problem (70) and (71) does not have bounded solutions. 

When (73) attains its double root, (70) and (71) can be integrated by an integration 
method in elementary calculus. The result is 

477i3A3/mi = D(A) (74) 

The phase shift x,, is given by 
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The free surface falls from rc) = 0 upstream to rL1) = -2~r~ih,/m, downstream on 
the site of the forcing. This fall does not suffer any energy loss, and hence is different 
from the hydraulic jump described in fluid dynamics textbooks (see, for example, 
Yih 1979). 

For the locally forced case, f(x) = 2P6(x), one can derive the following: 

xo = 2(m,/(mh,))~arcsech ($)+, (78) 

[~-2(m,/(.iiiA,))iarcsech (:);I 2Mh' 
qp (x )  = - 

m3 

In (79), when x+ 00, one obtains the dimensionless amplitude of the hydraulic fall 

Therefore, the fall's amplitude is proportional to the strength of the forcing and 
inversely proportional to the strength of the nonlinearity and that of the dispersion. 

In the next section, some examples of hydraulic fall will be seen and these 
examples arc used to illustrate the comparison among the asymptotic, computational 
and experimental results. 

5. Comparison of asymptotic, experimental and computational results 
5.1. Introduction to the comparison 

To compare the results obtained from asymptotic, computational and experimental 
methods, we need to convert all scales into the laboratory scales. The comparison can 
then be done under these calibrated scales. For the asymptotic approach, the basic 
concern is the shrinking of the horizontal lengthscale because of the long-wave 
assumption. For the direct numerical integration approach (i.e. the computational 
method), all the published literature takes the horizontal lengthscale to be the same 
as the vertical one. 

Recalling the non-dimensionalization a t  the beginning of $2, one can convert the 
dimensionless fKdV (49) into the laboratory fKdV 

Here 

is the perturbation of the upstream velocity from the critical value. 
Since there are no experimental and computational results simultaneously 

available for non-locally forced cases, we only consider the comparison in the case of 
local forcing. For this local forcing, there are two important parameters, E and P ,  
which are crucial to the response of the free boundaries. These two free boundaries 
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FIGURE 8. Shrinking of the base of the bump after the non-dimensionalization : (a) a bump in 
the laboratory, ( b )  the same bump in the fKdV scale. 

FIGURE 9. The same as figure 8 with specified bump shape: a semicircle in the laboratory. 

are described by the functions qi*)(x*, t*) and ql*)(x*, t*)  respectively. One should 
imagine that the value of e should be determined by the nature of the physical 
assumptions. In this paper, the nature of the physical assumption in setting-up the 
experimental apparatus is reflected in that the forcing is of order s2. It is this 
assumption which leads to the determination of E .  However, this determination is not 
unique. Namely, the dimensionless ‘small’ quantity E can take different values. The 
physical reason is that the physics should not depend on the choice of the small 
dimensionless parameter E as long as the choice of e is consistent with the physics. 
Mathematically, as soon as E is chosen, the dimensionless forcing amplitude P should 
be determined accordingly. It turns out that the physical quantities depending on 
both e and P take the same value for different values of E .  This is referred to as the 
e-invariant property. That is, even though the quantity e takes different values for 
the same problem, the physical quantities (like the maxima of solitary wave 
elevations, the amplitudes of hydraulic falls, etc.) computed from the fKdV theory 
are still the same. The details about the choice of E and P as well as the s-invariant 
property will be discussed in the next subsection. 

5.2.  The choice of the values of e 

Let the bump y* = H*(x*)  be the only forcing (see figure 8a) .  In terms of the 
dimensionless asymptotic variables, the bump is y = h(e-ix) (denoted by y = e2h(x) 
in $ 2 )  as shown in figure 86).  Let us concentrate on the case when the horizontal 
laboratory scale of the bump base is the same as the vertical one of the bump height. 
As an example, let us look at  the semicircular bump: y* = (R2-x*2) . f .  In 
dimensionless asymptotic scales, x = s :x* /H,  y = y * / H ,  and the semicircular bump 
becomes y = ( 1 / f ) ( E a 2 - x 2 ) i  (see figure 9a, 6 ) .  Here a = R / H .  The support of the 
bump is now [-@a, da], which is ei times smaller than the height a. This height a can 
be regarded as the amplitude of the forcing. Hence, e2 = a by the assumption on the 
magnitude of the forcing in $2. Consequently, 

1 

E = a%. (83) 
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Because of the short support in the dimensionless variable x in the asymptotic 
analysis, the bump is approximated by QS(x) in the dimensionless fKdV. Hence, 
P = tQ for the forcing term f ( x )  = 2PS(x) in the fKdV in SQ3 and 4. The forcing 
amplitude will be determined by the area A under the semicircle, namely 

00 W 

J-mH*(x*)  dx* = e2HQS(x) d(e-iHx) = A .  

(84) 
This leads to 

Q = d A / H 2  or Q = (iqa:. 
Equations (83) and (84) determine the values of e and Q for a given circular bump. 

For example, if R = 0.25H (a quarter of the total depth for the single-layer flow), 
then a = 0.25, e = (0.25); = 0.5, Q = (&IT) 0.259 = 0.1693. 

However, the choice of the E value is not unique. What has been shown above is 
only one method to determine E .  When the area of the bump is known but not the 
exact shape, the above method is not valid and the following more general procedure 
can be used. It is still assumed that the height and base of the bump are of 
comparable length. Then, in the laboratory, the bump area can be measured in the 
scale H .  Approximately, 2 H  x s2H = A.  This leads to 

8 = (A/H2)f.  (85) 
The delta forcing amplitude Q is still given by Q = e-iA/H2. As an example, let 
A = 0.0982H2. Then E = 0.5598, and Q = 0.2345. 

In  the case of semicircular bump forcing, a = R / H ,  s = ((in) a2)f, and Q = n-:ai. 
The above example then has 01. = 0.25, which is the same as the earlier example. Now 
8 = 0.5598, and Q = 0.2345. Obviously, this is a different choice of E and Q from that 
given by (83) and (84), although we are considering the same bump. It remains to be 
shown that the different choices of e and Q still yield the same free-surface elevation 
and all other physical quantities in the laboratory coordinates. This is a more 
detailed interpretation of what we referred to  earlier as the €-invariant property of 
the fKdV theory. 

We have already seen from (81) that the free-surface elevation is e-invariant since 
(81) is independent of e. However, it is not obvious that the e-invariant property does 
not change under the Dirac delta function approximation of the forcing. Nonetheless, 
we can show that indeed the s-invariant property continues to hold under the Dirac 
delta function approximation. As an example, we consider only physical quantities 
U ,  and U,, which are upstream velocities corresponding to the turning point and 
cutoff point, respectively. We show that 

THEOREM 2. Under the Dirac delta function approximation, U ,  and U, are still 
€-invariant in the fKdV theory for flows over a semicircular bump. 

Proof. U ,  = (gH$ (c, + €Ac) ,  U,  = (gH)i  (co + € A L )  recover the laboratory turning 
point velocity and cutoff velocity, respectively, from the asymptotic procedure. 
Namely, U ,  and U ,  are observable physical quantities in the laboratory. By the 
formulae for A,  and A, derived in $03 and 4, we have 

U ,  = (gH)~{1+efi(l/m)[3m~/(-16m4)]~}, (86) 
U, = (gH)f{1 + ~ f i ( l / m i ) [ 3 m ~ / ( - 4 m , ) l ~ } .  (87) 

The values of the dimensionless quantities r ~ i ,  m3 and m4 have already been 
determined by the density ratio p, the velocity ratio y and the depth ratio CT, and m, 
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m3 and m4 are independent of E .  Hence, U ,  and U, are functions of e and P according 
to (86) and (87), U, = U,(E, P), U, = U,(E, P ) .  So it is to be shown that &(e) does not 
change for different choices of E .  

As described a little earlier, P = iQ. When substituting E = at and Q = e-;A/H2 
into &, we obtain 

When substituting E = (A/H2)i and Q = s-$A/H2, we also obtain 

Therefore, by (86) and (87), 

E f i  = (A/H2)i. (88) 

& = (A/H2)i. 

U,(E = a$, Q = s&/H2) = U,(E = (A/H2) i ,  Q = d A / H 2 ) ,  

U,(E = at, Q = e-;A/H2) = UL(e = (A/H2)f, Q = e-:A/H2). 

This completes the proof. 

to 
When d = 1 for the single-layer flow, the above formulae for U,  and U, are reduced 

U,/(gH)f = 1+$[9A/(4H2)]f, (89) 

U,/(gH)h = 1 --[ 9A / ( 2H2)]3. (90) 

In  the next subsection, we shall compare these two formulae with those first derived 
by Miles (1986) via another asymptotic approach called Rayleigh’s formulation. 

5.3. Comparison of the results 
The comparison is conducted for the following five quantities : U,, U,, A,, Ash and Asl. 
Here, U,  is the supercritical turning point, U, the subcritical cutoff point, A,  the 
amplitude of the hydraulic fall, Ash the amplitude of the higher supercritical solitary 
wave, and Asl the amplitude of the lower solitary wave. U,, U,, A,, Ash and Asl are 
dimensional quantities and physically observable. The experimental data are from 
Forbes (1988) and Sivakumaran et al. (1983). The computational data are from 
Vanden-Broeck (1987) and Forbes (1988, 1989). 

5.3.1. Single-layer flow forced by a semicircular bump 
Wu & Wu (1982) first conjectured the non-existence of transcritical stationary 

solutions by saying that ‘The transcritical motion does not approach a steady state’. 
By Rayleigh’s asymptotic formulation, Miles (1986) concluded that ‘The hypothesis 
of steady flow presumably fails in the transcritical range ’. This range, expressed in 
terms of the upstream Froude number, is (F,, F,). He found that 

( (9A):)’, F,= ( 1 +  (9A):): 7 . 
4H FL= 1- - 

2H2 

When A/H2 is very small (i.e. the bump area is much smaller than that of the 
square [0, HI x [0, HI) ,  the linear approximation of (91) leads to the result in this 
paper (see (90) and (89)). Figure 10 presents the complete comparison among the 
asymptotic results by Miles (1986) and Shen (1991) and this paper, computational 
results by Vanden-Broeck (1987) and Forbes (1988), and the experimental results by 
Forbes (1988). One can see that the results from our approach are in reasonable 
agreement with those from the computational and experimental approach in 
the entire range of ‘small’ forcing. This agreement is the best in the range 

20 FLM 234 
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FIQURE 10. Comparison of the values of U ,  and U L  in a single-layer flow over a semicircular bump 
of radius R. a = R / H ,  where H is the depth of the flow. The solid lines represent the results from 
the fKdV (see (89) and (go)), the big dots Vanden-Broeck’s (1987) computational results, the small 
dots Forbes’ (1988) experimental results, the long dashed line Forbes’ (1988) computational results, 
end the light lines Miles’ (1986) asymptotic results. 

F, 

a Miles Vanden-Broeck 

0.1 1.0525 
0.2 1.1276 1.2 
0.3 1.2108 
0.4 1.2976 
0.5 1.3859 1.46 

FL 

Shen Miles Forbes Shen 

1.0585 0.9105 0.87 0.9145 
1.1357 0.7545 0.71 0.7846 
1.2330 0.5102 0.54 0.6302 
1.3419 0.38 0.4572 
1.4604 0.26 0.2692 

TABLE 1 .  Comparison of the values of the supercritical turning point Froude number and the 
subcritical cutoff point Froude number obtained by Miles (1986), Vanden-Broeck (1987), Forbes 
(1988) and Shen (the present paper) 

0.45 < a < 0.55 and the worst in the range 0.2 < a < 0.4. Miles’ asymptotic 
procedure yields a very good result when a = 0.29. But it seems that Miles’ approach 
ceases to be valid when the forcing is strong, say a > 0.30. 

At a = 0.5, Vanden-Broeck’s computational approach yields U,/(gH)i  = 1.46. We 
obtained the same value from our asymptotic approach. Also at a = 0.5, Forbes’ 
computational approach results in U,/(gH): = 0.26. We obtained 0.27 from our 
asymptotic approach. The difference is about 4%. For a more detailed comparison 
of the values, see table 1. 

Table 1 displays the computational results and asymptotic results for the 
upstream velocities U,  and U, for a = 0.1, 0.2, 0.3, 0.4 and 0.5. There are no 
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computational results available for a > 0.5. According to (89) and ( g o ) ,  and the 
conservation of the flow flux, the ratio of the downstream velocity to the upstream 
velocity is extremely large when a is greater than 0.5. The large velocity ratio may 
contribute significantly to the flow instability. Probably, the phenomenon that the 
downstream cnoidal wave approaches a half-solitary wave (the tale of the hydraulic 
fall) as F increases to FL, may disappear. Instead, a sharp-angle stagnation point on 
the free surface may appear in the supercritical region of the forcing site. This 
possibility was noticed by Forbes (1988). He described his opinion regarding this 
question from both numerical and physical viewpoints. Numerically, when a > 0.5, 
the downstream velocity is very large and causes the numerical grid points to cluster 
very close together in the downstream portion of the flow. Hence, the numerical 
scheme fails to converge. Physically, he pointed out that the problem may become 
unstable when a is large (say, a > 0.5). Perhaps, the transition state from the stable 
steady flow to the unstable flow is the appearance of a free-surface sharp angle on the 
site of forcing. 

Recall that we assumed that the forcing is small (of order e2). However, as shown 
by comparison with the computational results and the experimental results, our 
approach is still valid even if the height of the circular bump is as large as half of the 
upstream depth. For this large forcing, the value of the ‘small’ number E is now as 
large as 0.7. 

Also recall our remark in 1 that the ‘near ’-critical assumption does not preclude 
reasonably large intervals, within which our asymptotic results are still valid. One 
can see from figure 10 that this ‘near’-critical interval can be as large as (0.26,1.46) 
(gH)i.  This interval includes the critical speed (gH);. If the upstream depth H is equal 
to 0.5 m, then our ‘near’-critical interval is (0.57,3.23) m/s = (2 ,12)  km/h. This 
simple example shows that our asymptotic analysis is valid in a large range of flow 
speed and is applicable to most cases in practical applications. 

Next, we compare the amplitudes of the solitary waves. Recalling the proof of 
Theorem 2, Qei = A / H 2  and P = g. From (67) ,  we can get the relationship between 
the Froude number and the amplitudes of the higher and lower solitary waves: 

.)+{$}])’. (92) 
Ilr:l)*llao - -3  - 1/3Am, 

H 4H2 A ( f i m , ( F - l )  r(cos[iarccos( 8H2( -mm,fi3(F- l),)f 

The phase shifts $n and $n correspond to the higher solitary wave amplitude Ash and 
the lower solitary wave amplitude A,, respectively. As F -+ co, the angle 

+ @ - O .  
- 1/3Am, 

8H2( -m4 fi3(F - l),)f 
8 = iarccoa 

For the lower branch, cos (in+@) = -;1/3. So Asl has a parabolic asymptote: 

as F + m .  
A 

2H(mm4( 1 -F))i  (93) 

For the higher branch, we need to notice that if x = $n - y and y - O +  , then 
cosx - - y. One then can find a straight line asymptote for Ash 

3fFi(F - 1) 

m3 

ASh - H as F+co. (94) 

This asymptote is independent of the magnitude of the forcing. 
20.2 
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FIGURE 11. Comparison of supercritical turning point bifurcation for a semicircular bump of radius 
R .  The solid lines represent the results from (92) in the present paper. The dotted lines represent 
Vanden-Broeck’s (1987) computational results. 

F 

The turning point of the bifurcation diagram (i.e. the joining point of the Ash curve 
and the Asl curve) occurs at 0 = 0. This leads to 

- 4 3 A m 3  
8A( - m 4 a 3 ( F -  1)3)1 

* = 1. 

In turn, this leads to the value of the Froude number at the turning point : 

When m3 = -%, m4 = -; and TE = 1, (95) is reduced to (89). Figure 11 presents a 
comparison of our asymptotic results with the computational results by Vanden- 
Broeck (1987). For the lower branch of the solitary waves, the agreement is better. 
For smaller forcing (i.e. smaller a), the agreement is also better. This certainly is 
what one expects, for the asymptotic approach should work better for smaller 
forcings and flatter waves. It is known that for a supercritical flow in a channel of flat 
bottom the surface solitary wave gradually develops a 120’ sharp-angle singularity 
as the upstream Froude number increases (see Hunter & Vanden-Broeck 1983; 
Vanden-Broeck 1987). The nonlinearity becomes stronger for the singularity than for 
the smooth solitary waves. When the 120’ sharp-angle singularity appears, the 
surface is not in the range of ‘relative flat ’. This flatness is the very assumption upon 
which the weakly nonlinear shallow-water theory is based. Therefore, when the 120” 
singularity occurs, the wave is no longer ‘shallow’. Instead it is so ‘deep’ around the 
singularity that the surface does not feel the existence of the bottom. Viewing the 
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fluid is infinitely deep around the singularity, one can analytically find the structure 
of the 120' singularity (see any advanced fluid mechanics textbook). Dias & Vanden- 
Broeck (1989) showed that the same 120' singularity occurs for nonlinear surface 
waves forced by a bump in a single-layer flow. At the tip of the 120' angle, the flow 
speed is equal to zero. Bernoulli's equation results in the relationship between the 
amplitude of the wave (i.e. the elevation of the tip of the 120' angle) and the 
upstream Froude number P: 

q*/H = lp2. (96) 

The dashed line in figure 11 corresponds to the above relation. The higher branch 
of solitary waves from asymptotics becomes invalid (at least physically) at  the 
intersection with the dashed line. Compared with the results of Hunter & Vanden- 
Broeck (1983), the asymptotic solution of the upper branch solitary waves ceases to 
be valid before the intersection. For instance, in the case of zero forcing, the 
intersection is at F = 2, whereas the highest solitary wave occurs at  the largest 
possible value of F = 1.29091. When forcing is present, these two values get closer. 
In any case, those points which are above the dashed line on the bifurcation diagram 
do not have physical counterparts. From figure 11, we see that the range for 
existence of the higher solitary wave is very short. This range is even shorter for 
stronger forcing. It is because of this short range of Froude number that it is difficult 
to conduct the experiment to observe stationary solitary waves. 

Finally we come to the comparison of the amplitude of the hydraulic falls. From 
(80), one can get the amplitude of the hydraulic fall in the laboratory: 

Let H,, denote the downstream depth of the hydraulic fall. Then 

This relation is plotted in figure 12. The computational results and experimental 
results due to Forbes (1988) are included in the figure for comparison. The agreement 
is best when u is near 0.45. 

The concavity of the curves in figure 12 seems deserving of further attention. Our 
asymptotic approach gives a concave down curve, whereas both computational and 
experimental results due to Forbes support a concave up relation when a is larger 
than 0.1. This disagreement remains to be clarified. 

5.3.2. Single-layer flow forced by a Gaussian bump 
Sivakumaran et al. (1983) experimentally determined hydraulic fall profiles over a 

Gaussian bump. The shape of the bump is given by y* = 2Oexp(-$(~*/24)~) cm. 
Hence the area of the bump is A = 240(2x)i cm2. In their figure 7 ( a ) ,  the upstream 
depth is H = 34.8 cm, and the upstream Froude number is 0.17. By our formula (go), 
it is found that FL = 0.15, which is about 10% below the experimental value 0.17. 
This is consistent with our previous comparison with Forbes' results. Namely, when 
e > 0.7,  our asymptotic formula (90) will underestimate the upstream Froude 
number FL. Part of this error is contributed by the &function approximation of the 
bump. For a big bump, the base of the bump is no longer much smaller than the 
height after the non-dimensionalization since & is no longer small. Hence the S- 
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FIGURE 12. Comparison of the downstream depth after the subcritical hydraulic fall with Forbes’ 
results. The solid line is the results from (98) in the present paper. The light line represents Forbes’ 
(1988) computational results and the dots represent Forbes’ (1988) experimental results. 

function approximation would introduce a noticeable error. In addition, we have 
seen that the b-function approximation does not distinguish the shape of the bump. 
Instead it basically regards every bump as a short obstruction of the same area. The 
shorter the obstruction, the better the approximation. Intuition suggests that the 
hydraulic fall over a shorter bump of the same area corresponds to a lower upstream 
velocity. Hence our formula (90) would underestimate the upstream velocity of a 
hydraulic fall. In the example above, e = (20/34.8)i = 0.76 > 0.7. After the non- 
dimensionalization the bump is not short enough. Consequently, our formula (90) 
underestimates FL and does not yield an accurate answer. 

When the b-function approximation fails, one has to use some numerical methods 
to solve the boundary-value problem for the fKdV. A numerical scheme for finding 
solitary waves from the fKdV has been given in $3. Direct integration from the 
Laplace equation for finding hydraulic falls over a Gaussian bump was done by King 
& Blohr (1990). Numerical methods for finding hydraulic falls from the fKdV can be 
found in Shen & Shen (1990). 

In figure 7 (b )  of Sivakumaran et al. (1983), the upstream depth is H = 27.2, and the 
upstream Froude number is 0.81. Now e = (20/27.2); = 0.86. This e is too big to be 
considered as a small number in our asymptotic procedure. This is basically because 
of the reason stated above concerning the S-function approximation. Fortunately, 
there exist other types of asymptotic approaches which can be used to find those 
wave free surfaces over large bumps. These approaches are called the Saint-Venant 
method and the Green-Naghdi method, respectively. For details, see Sivakumaran 
et al. (1983) and Naghdi & Vongsarnpigoon (1986). 
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5.3.3. Two-layer hydraulic falls over a semicircular bump 

The comparison here is with the recent computational results due to Forbes (1989). 
He considered the hydraulic falls of two-layer flows over a semicircular bump in a 
two-dimensional channel. We will see that his results apply only for the fast mode. 
This is not surprising, because for the examples he presented, the slow-mode 
hydraulic falls correspond to either rest water or backflow. 

In his figure 1, cr = 1,  p = 0.6, y = 1.454, and a = 0.45. For the fast mode, by the 
formulae derived in $2 we have clO) = 1.154, cp) = 1.003, m, = 1.706, = 1.869, 
m3 = - 1.824, m4 = - 1.497. Then, the upstream velocity of the internal layer can 
be computed by following the method in $5.3.1. The result is ci(gHi)i = (cl0)+eA,) 
(gH,)i = 1 .OO6(gHi)t. Forbes’ computational result is 1 .O(gHi)i. This may be regarded 
as an exact agreement. 

For the slow mode, also by the formulae derived in $2, we have clO) = 0.377, cia) = 
0.548, m, = 1.708, m = 2.205, m3 = -2.187, mp = -0.062. The upstream velocity of 
the internal layer is c,(gH,)$ = -0.031(gHi)i. This may be regarded as rest water. 

The dashed lines in Forbes’ figure 4 correspond to: cr = 0.4, p = 0.6, y = 1.0, and 
a = 0.2. For the fast mode, we have cia) = cp) = 1.129, m, = m = 0.890, m3 = - l.OF9, 
m4 = -0.268. Then the upstream velocity of the internal layer is ci(gHi)r = 
0.998(gHi)+. Forbes’ result is 1 .O(gH,)i. This is an exact agreement too. Actually, 
Forbes proceeded differently in his computation. He prescribed the upstream 
velocity of the internal layer and regarded the depth of the surface layer as the 
unknown. That is, he assumed cIo) = 1 and used this to find the unknown cr. In  the 
present asymptotic formulation, we see from (38) that one can find any one of the five 
quantities cr, p,  a, y ,  and ci as long as the other four are prescribed. 

For the slow mode of the above example, we found that ci=-0.270. This 
corresponds to a backflow hydraulic fall. 

For the solid lines in Forbes’ figure 4, cr = 0.4, p = 0.6, y = 1.0, and a = 0.425. We 
found that ci = 0.727. This is very much below Forbes’ computational result 1.0. 
Probably, this is because the base of the bump is too long for our &function 
approximation to be valid. 

6. Discussion and concluding remarks 
In this section, we first discuss the following two issues : transcritical solutions of 

the fKdV and the critical layers. Then we make some concluding general remarks 
about forced two-layer flows. 

Recall that the upstream velocity is called transcritical if A, < A < A,. Trans- 
critical upstream soliton radiation solutions of fKdV have been studied by many 
authors since 1982. All of the studies have confirmed the original numerical and 
experimental discoveries made by Professor T. Yao-Tsu Wu’s group in Caltech (Wu 
& Wu 1982 ; Huang et al. 1982). This group investigated the forced single-layer flow. 
They found that when the upstream velocity is near the shallow-water critical 
velocity (gH);,  the flow never approaches a steady state ‘ in conspicuous contrast to 
the steadiness of a moving disturbance ’. Instead, solitons are periodically generated 
at the site of the disturbance and radiated upstream. Immediately behind the 
disturbance a region of depressed water with almost uniform depth appears. The 
downstream end of the region of depressed water propagates downstream at a 
uniform speed. The surface of the downstream water following this depressed water 
region consists of a section of a tampering wake, which becomes weaker further 
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downstream. The length of this wake section grows uniformly with time. Wu’s group 
has supported their finding by experiments, the Boussinesq theory and the fKdV 
theory. From different perspectives, Cole (1985), Mei (1986), Grimshaw & Smyth 
(1986), Smyth (1987), Wu (1987) and Lee et al. (1989) made their contributions to 
support the upstream soliton radiation phenomenon. Wu (1987) was very much 
concerned with an analytical expression of the period of the soliton generation. From 
the fKdV, he derived an approximate formula for this period. Nevertheless, this 
formula requires knowledge of the downstream depression, but this downstream 
depression is supposed to be an unknown. The beauty of Wu’s derivation lies in its 
simplicity and clear physical meaning. Smyth (1987) found an approximate formula 
for this period from the modulation theory for the KdV. This formula yields results 
which agree well with numerical solutions of the fKdV. 

The formulae due to Wu (1987) and Smyth (1987) both fail to predict the correct 
soliton generation period when A is in (hL,A,) but close to the boundary points. 
Actually, whether the maximum soliton radiation range of the upstream velocity is 
( A L ,  A,) is still an unanswered question (Shen 1991). Lee et al. (1989) tried to provide 
an answer to the question from a numerical viewpoint, but they could not reach a 
clear conclusion. 

Stationary solutions exist when A 2 A, and A < A,. Some of these solutions have 
been conjectured to be stable (Shen 1989). The surface elevation tends to be 
sustained on the site of forcing and downstream for A > A, and h < A, respectively. 
Hence, it seems that when h is in (A,, A,) but close to the boundary points, the soliton 
first generated is trapped at  the site of the forcing and needs a long time to be 
radiated upstream. When A = A,  or A = A,, this ‘long time’ becomes infinity and the 
soliton radiation episode disappears. Consequently, the flow approaches a stable 
steady state and remains in this state later on. 

Next we discuss the critical layers. From 443 and 4, the amplitude of the solitary 
wave and that of the hydraulic fall are inversely proportional to the coefficient m4 of 
the fKdV. However m4 can be zero for some parameters. When p,  y and the forcing 
are fixed, the solution of m4(n) = 0 gives the critical thickness ratio  IT^. The interface 
of the two fluids with the critical thickness ratio u, is called the critical layer. In this 
case, our asymptotic method fails because our approach yields unbounded solutions. 
The reason is that the nonlinearity in the critical-layer flow is too strong to be 
described by the fKdV. The free boundary response to forcing of order e2 is larger 
than order e .  Recall the Miura transformation from the standard KdV to the 
modified KdV : 

ut - 6uu, + u,,, = 0 (standard KdV), 

u = v2 + v, (Miura transformation), 

(2v + &) (vt - 6v2v, + v,,,) = 0 (transformed equation), 

vt -6v2v,+v,,, = 0 (modified KdV as a first integral). 

One can see that if u(x,t) is of order e ,  then v(x , t )  is of order et. Hence we may 
assume the order of the stronger nonlinear response is 6:. This idea was used by 
Kakutani & Yamasaki (1978). However, we have a great difficulty here. Because of 
the forcing, the inhomogeneity of the fKdV prevents the transformed equation from 
having an obvious first integral as given above for the KdV. In the case of the critical 
layer, the asymptotically reduced equation is a fourth-order partial diffcrcntial 
equation, which is generally more difficult to solve. 
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Finally, we briefly summarize our present paper and make some remarks about 
future studies in this area. It has been shown that the fKdV type of asymptotic 
method is an effective approach to study long waves in single-layer and two-layer 
flows over a bump. When the support of the bump is less than the depth of the 
internal layer, the bump may be regarded as local and approximated by the Dirac 
delta function. With this approximation, all the supercritical and subcritical waves 
can be analytically found. The error due to this &function approximation should be 
small. Otherwise, the Dirac delta function approximation may sometimes result in 
a large error and the bump should now be regarded as non-local. In that case, 
numerical methods are required to solve the non-locally forced fKdV. The analytical 
solutions for a local bump make the results, which otherwise need numerical 
solutions, more transparent. However we emphasize again that this Dirac delta 
function approximation fails when the support of the bump is long. The long bump 
belongs to the category of non-local forcing and a numerical method must be 
employed to solve the fKdV. 

There remain many interesting and important problems to solve. We list three of 
them here. First, under what lengthscale of the waves does the free-surface elevation 
couple with the interface elevation in algebraic order less than 4 ? In that case, what 
would be the classification of the solutions according to the upstream velocity ? The 
second problem concerns the critical layer. In critical-layer flows, can one recover the 
dispersive and non-dissipative internal bore observed by Melville & Helfrich (1987) ? 
The third is a big and very difficult mathematical problem. Can one find an inverse 
scattering method or a nonlinear superposition principle of Backlund type of 
transformation for the fKdV? The difficulty lies in the disappearance of the 
symmetry which is associated with an unforced KdV. The Lie group method cannot 
be directly applied to the inhomogeneous fKdV. Establishment of a theory to find 
analytical solutions to inhomogeneous evolution equations would be a significant 
contribution to mathematics and physics. Fokas & Ablowitz (1989) have already 
made a first try. 
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